basekernel/kernel/process.c

562 lines
13 KiB
C
Raw Permalink Normal View History

2024-10-14 23:08:11 +02:00
/*
Copyright (C) 2015-2019 The University of Notre Dame
This software is distributed under the GNU General Public License.
See the file LICENSE for details.
*/
#include "process.h"
#include "kobject.h"
#include "page.h"
#include "string.h"
#include "list.h"
#include "x86.h"
#include "interrupt.h"
#include "memorylayout.h"
#include "kmalloc.h"
#include "kernel/types.h"
#include "kernelcore.h"
#include "main.h"
#include "keyboard.h"
#include "clock.h"
struct process *current = 0;
struct list ready_list = { 0, 0 };
struct list grave_list = { 0, 0 };
struct list grave_watcher_list = { 0, 0 }; // parent processes are put here to wait for their children
struct process *process_table[PROCESS_MAX_PID] = { 0 };
void process_init()
{
current = process_create();
pagetable_load(current->pagetable);
pagetable_enable();
current->state = PROCESS_STATE_READY;
current->waiting_for_child_pid = 0;
}
void process_kstack_reset(struct process *p, unsigned entry_point)
{
struct x86_stack *s;
p->state = PROCESS_STATE_CRADLE;
s = (struct x86_stack *) p->kstack_ptr;
s->regs2.ebp = (uint32_t) (p->kstack_ptr + 28);
s->old_ebp = (uint32_t) (p->kstack_ptr + 32);
s->old_eip = (unsigned) intr_return;
s->fs = 0;
s->gs = 0;
s->es = X86_SEGMENT_USER_DATA;
s->ds = X86_SEGMENT_USER_DATA;
s->cs = X86_SEGMENT_USER_CODE;
s->eip = entry_point;
s->eflags.interrupt = 1;
s->eflags.iopl = 3;
s->esp = PROCESS_STACK_INIT;
s->ss = X86_SEGMENT_USER_DATA;
}
void process_kstack_copy(struct process *parent, struct process *child)
{
child->kstack_top = child->kstack + PAGE_SIZE - 8;
child->kstack_ptr = child->kstack_top - sizeof(struct x86_stack);
struct x86_stack *child_regs = (struct x86_stack *) child->kstack_ptr;
struct x86_stack *parent_regs = (struct x86_stack *) (parent->kstack_top - sizeof(struct x86_stack));
*child_regs = *parent_regs;
child_regs->regs2.ebp = (uint32_t) (child->kstack_ptr + 28);
child_regs->old_ebp = (uint32_t) (child->kstack_ptr + 32);
child_regs->old_eip = (unsigned) intr_return;
child_regs->regs1.eax = 0;
}
/*
Valid pids start at 1 and go to PROCESS_MAX_PID.
To avoid confusion, keep picking increasing
pids until it is necessary to wrap around.
"last" is the most recently selected pid.
*/
static int process_allocate_pid()
{
static int last = 0;
int i;
for(i = last + 1; i < PROCESS_MAX_PID; i++) {
if(!process_table[i]) {
last = i;
return i;
}
}
for(i = 1; i < last; i++) {
if(!process_table[i]) {
last = i;
return i;
}
}
return 0;
}
void process_selective_inherit(struct process *parent, struct process *child, int * fds, int length)
{
int i;
for (i=0;i<length;i++) {
if(fds[i]>-1) {
child->ktable[i] = kobject_copy(parent->ktable[fds[i]]);
} else {
child->ktable[i] = 0;
}
}
child->ppid = parent->pid;
}
void process_inherit(struct process *parent, struct process *child)
{
/* Child inherits everything parent inherits */
int i;
int * fds = kmalloc(sizeof(int)*PROCESS_MAX_OBJECTS);
for (i = 0; i < PROCESS_MAX_OBJECTS; i++)
{
if (parent->ktable[i]) {
fds[i] = i;
} else {
fds[i] = -1;
}
}
process_selective_inherit(parent, child, fds, PROCESS_MAX_OBJECTS);
kfree(fds);
}
int process_data_size_set(struct process *p, unsigned size)
{
// XXX check valid ranges
// XXX round up to page size
if(size % PAGE_SIZE) {
size += (PAGE_SIZE - size % PAGE_SIZE);
}
if(size > p->vm_data_size) {
uint32_t start = PROCESS_ENTRY_POINT + p->vm_data_size;
pagetable_alloc(p->pagetable, start, size, PAGE_FLAG_USER | PAGE_FLAG_READWRITE | PAGE_FLAG_CLEAR);
} else if(size < p->vm_data_size) {
uint32_t start = PROCESS_ENTRY_POINT + size;
pagetable_free(p->pagetable, start, p->vm_data_size);
} else {
// requested size is equal to current.
}
p->vm_data_size = size;
pagetable_refresh();
return 0;
}
int process_stack_size_set(struct process *p, unsigned size)
{
// XXX check valid ranges
// XXX round up to page size
if(size > p->vm_stack_size) {
uint32_t start = -size;
pagetable_alloc(p->pagetable, start, size - p->vm_stack_size, PAGE_FLAG_USER | PAGE_FLAG_READWRITE | PAGE_FLAG_CLEAR);
} else {
uint32_t start = -p->vm_stack_size;
pagetable_free(p->pagetable, start, p->vm_stack_size - size);
}
p->vm_stack_size = size;
pagetable_refresh();
return 0;
}
void process_stack_reset(struct process *p, unsigned size)
{
process_stack_size_set(p, size);
memset((void *) -size, size, 0);
}
struct process *process_create()
{
struct process *p;
p = page_alloc(1);
p->pid = process_allocate_pid();
process_table[p->pid] = p;
p->pagetable = pagetable_create();
pagetable_init(p->pagetable);
p->vm_data_size = 0;
p->vm_stack_size = 0;
process_data_size_set(p, 2 * PAGE_SIZE);
process_stack_size_set(p, 2 * PAGE_SIZE);
p->kstack = page_alloc(1);
p->kstack_top = p->kstack + PAGE_SIZE - 8;
p->kstack_ptr = p->kstack_top - sizeof(struct x86_stack);
process_kstack_reset(p, PROCESS_ENTRY_POINT);
// XXX table should be allocated
int i;
for(i = 0; i < PROCESS_MAX_OBJECTS; i++) {
p->ktable[i] = 0;
}
p->state = PROCESS_STATE_READY;
return p;
}
void process_delete(struct process *p)
{
int i;
for(i = 0; i < PROCESS_MAX_OBJECTS; i++) {
if(p->ktable[i]) {
kobject_close(p->ktable[i]);
}
}
pagetable_delete(p->pagetable);
page_free(p->kstack);
page_free(p);
process_table[p->pid] = 0;
}
void process_launch(struct process *p)
{
list_push_tail(&ready_list, &p->node);
}
static void process_switch(int newstate)
{
interrupt_block();
if(current) {
if(current->state != PROCESS_STATE_CRADLE) {
asm("pushl %ebp");
asm("pushl %edi");
asm("pushl %esi");
asm("pushl %edx");
asm("pushl %ecx");
asm("pushl %ebx");
asm("pushl %eax");
asm("movl %%esp, %0":"=r"(current->kstack_ptr));
}
interrupt_stack_pointer = (void *) INTERRUPT_STACK_TOP;
current->state = newstate;
if(newstate == PROCESS_STATE_READY) {
list_push_tail(&ready_list, &current->node);
}
if(newstate == PROCESS_STATE_GRAVE) {
list_push_tail(&grave_list, &current->node);
}
}
current = 0;
while(1) {
current = (struct process *) list_pop_head(&ready_list);
if(current)
break;
interrupt_unblock();
interrupt_wait();
interrupt_block();
}
current->state = PROCESS_STATE_RUNNING;
interrupt_stack_pointer = current->kstack_top;
asm("movl %0, %%cr3"::"r"(current->pagetable));
asm("movl %0, %%esp"::"r"(current->kstack_ptr));
asm("popl %eax");
asm("popl %ebx");
asm("popl %ecx");
asm("popl %edx");
asm("popl %esi");
asm("popl %edi");
asm("popl %ebp");
interrupt_unblock();
}
int allow_preempt = 0;
void process_preempt()
{
if(allow_preempt && current && ready_list.head) {
process_switch(PROCESS_STATE_READY);
}
}
void process_yield()
{
/* no-op if process module not yet initialized. */
if(!current) return;
process_switch(PROCESS_STATE_READY);
}
void process_exit(int code)
{
// printf("process %d exiting with status %d...\n", current->pid, code); --> transport to kshell run
current->exitcode = code;
current->exitreason = PROCESS_EXIT_NORMAL;
process_wakeup_parent(&grave_watcher_list); // On exit, wake up parent if need be
process_switch(PROCESS_STATE_GRAVE);
}
void process_wait(struct list *q)
{
list_push_tail(q, &current->node);
process_switch(PROCESS_STATE_BLOCKED);
}
void process_wakeup(struct list *q)
{
struct process *p;
p = (struct process *) list_pop_head(q);
if(p) {
p->state = PROCESS_STATE_READY;
list_push_tail(&ready_list, &p->node);
}
}
void process_reap_all()
{
struct process *p;
while((p = (struct process *) list_pop_head(&grave_list))) {
process_delete(p);
}
}
/* Wakes up parent off of the corresponding list*/
void process_wakeup_parent(struct list *q)
{
struct process *p = (struct process *) q->head;
// Loop through all the waiting parents to see if one needs to be woken up
while(p) {
if(p->pid == current->ppid && (p->waiting_for_child_pid == 0 || p->waiting_for_child_pid == current->pid)) {
p->state = PROCESS_STATE_READY;
p->waiting_for_child_pid = 0;
list_remove(&p->node);
list_push_tail(&ready_list, &p->node);
break;
}
p = (struct process *) (&p->node)->next;
}
}
void process_wakeup_all(struct list *q)
{
struct process *p;
while((p = (struct process *) list_pop_head(q))) {
p->state = PROCESS_STATE_READY;
list_push_tail(&ready_list, &p->node);
}
}
void process_dump(struct process *p)
{
struct x86_stack *s = (struct x86_stack *) (INTERRUPT_STACK_TOP - sizeof(*s));
printf("kstack: %x\n", p->kstack);
printf("stackp: %x\n", p->kstack_ptr);
printf("eax: %x cs: %x\n", s->regs1.eax, s->cs);
printf("ebx: %x ds: %x\n", s->regs1.ebx, s->ds);
printf("ecx: %x ss: %x\n", s->regs1.ecx, s->ss);
printf("edx: %x eflags: %x\n", s->regs1.edx, s->eflags);
printf("esi: %x\n", s->regs1.esi);
printf("edi: %x\n", s->regs1.edi);
printf("ebp: %x\n", s->regs1.ebp);
printf("esp: %x\n", s->esp);
printf("eip: %x\n", s->eip);
}
int process_available_fd(struct process *p)
{
struct kobject **fdtable = current->ktable;
int i;
for(i = 0; i < PROCESS_MAX_OBJECTS; i++) {
if(fdtable[i] == 0)
return i;
}
return -1;
}
int process_object_max(struct process *p)
{
struct kobject **fdtable = current->ktable;
int i;
// Because of 0-indexing, PROCESS_MAX_OBJECTS is the size and
// therefor 1 offset, don't look for 0 there.
for(i = PROCESS_MAX_OBJECTS - 1; i > -1; i--) {
if(fdtable[i] != 0)
return i;
}
return -1;
}
void process_make_dead(struct process *dead)
{
int i;
for(i = 0; i < PROCESS_MAX_PID; i++) {
if(process_table[i] && process_table[i]->ppid == dead->pid) {
process_make_dead(process_table[i]);
}
}
dead->exitcode = 0;
dead->exitreason = PROCESS_EXIT_KILLED;
if(dead == current) {
process_switch(PROCESS_STATE_GRAVE);
} else {
list_remove(&dead->node);
list_push_tail(&grave_list, &dead->node);
}
}
int process_kill(uint32_t pid)
{
if(pid > 0 && pid <= PROCESS_MAX_PID) {
struct process *dead = process_table[pid];
if(dead) {
printf("process killed\n");
process_make_dead(dead);
return 0;
} else {
return 1;
}
} else {
return 1;
}
}
int process_wait_child(uint32_t pid, struct process_info *info, int timeout)
{
clock_t start, elapsed;
uint32_t total;
if(!info)
return -1;
start = clock_read();
do {
struct process *p = (struct process *) (grave_list.head);
while(p) {
struct process *next = (struct process *) p->node.next;
if((pid != 0 && p->pid == pid) || (p->ppid == current->pid)) {
info->exitcode = p->exitcode;
info->exitreason = p->exitreason;
info->pid = p->pid;
return p->pid;
}
p = next;
}
current->waiting_for_child_pid = pid;
process_wait(&grave_watcher_list);
elapsed = clock_diff(start, clock_read());
total = elapsed.millis + elapsed.seconds * 1000;
} while(total < timeout || timeout < 0);
return 0;
}
int process_reap(uint32_t pid)
{
struct process *p = (struct process *) (grave_list.head);
while(p) {
struct process *next = (struct process *) p->node.next;
if(p->pid == pid) {
list_remove(&p->node);
process_delete(p);
return 0;
}
p = next;
}
return 1;
}
/*
process_pass_arguments set up the current process stack
so that it contains a copy of p->args and p->args_length
at the very top, serving as the initial arguments to the entry function:
void entry( const char *args, int args_length );
*/
#define PUSH_INTEGER( value ) esp -= sizeof(int); *((int*)esp)=(int)(value);
void process_pass_arguments(struct process *p, int argc, char **argv)
{
/* Get the default stack pointer position. */
char *esp = (char *) PROCESS_STACK_INIT;
/* Make a local array to keep track of user addresses. */
char **addr_of_argv = kmalloc(sizeof(char *) * argc);
/* For each argument, in reverse order: */
int i;
for(i = (argc - 1); i >= 0; i--) {
/* Size is strlen plus null terminator, integer aligned. */
int length = strlen(argv[i]) + 1;
if(length % 4) {
length += (4 - length % 4);
}
esp -= length;
/* Push length bytes onto the stack. */
memcpy(esp, argv[i], length);
/* Remember that address for later */
addr_of_argv[i] = esp;
}
/* Push each item of argc, in reverse order. */
for(i = (argc - 1); i >= 0; i--) {
PUSH_INTEGER(addr_of_argv[i]);
}
/* Keep the address of the array start. */
const char *addr_of_addr_of_argv = esp;
/* Push the arguments to main */
PUSH_INTEGER(addr_of_addr_of_argv);
PUSH_INTEGER(argc);
/* Final stack pointer should be below the last item. */
esp -= 4;
/* Set the starting stack pointer on the kstack to this new value */
struct x86_stack *s = (struct x86_stack *) p->kstack_ptr;
s->esp = (int) (esp);
kfree(addr_of_argv);
}
int process_stats(int pid, struct process_stats *s)
{
if(pid > PROCESS_MAX_PID || !process_table[pid]) {
return 1;
}
*s = process_table[pid]->stats;
return 0;
}