/* Copyright (C) 2015-2019 The University of Notre Dame This software is distributed under the GNU General Public License. See the file LICENSE for details. */ /* Driver for the Motorola MC 146818A Real Time Clock Recommended reading: page 11-15 of the RTC data sheet */ #include "kernel/types.h" #include "ioports.h" #include "rtc.h" #include "console.h" #include "string.h" #include "interrupt.h" #define RTC_BASE 0x80 #define RTC_SECONDS (RTC_BASE+0) #define RTC_SECONDS_ALARM (RTC_BASE+1) #define RTC_MINUTES (RTC_BASE+2) #define RTC_MINUTES_ALARM (RTC_BASE+3) #define RTC_HOURS (RTC_BASE+4) #define RTC_HOURS_ALARM (RTC_BASE+5) #define RTC_DAY_OF_WEEK (RTC_BASE+6) #define RTC_DAY_OF_MONTH (RTC_BASE+7) #define RTC_MONTH (RTC_BASE+8) #define RTC_YEAR (RTC_BASE+9) #define RTC_REGISTER_A (RTC_BASE+10) #define RTC_REGISTER_B (RTC_BASE+11) #define RTC_REGISTER_C (RTC_BASE+12) #define RTC_REGISTER_D (RTC_BASE+13) #define RTC_ADDRESS_PORT 0x70 #define RTC_DATA_PORT 0x71 /* Register A bits */ #define RTC_A_UIP (1<<7) #define RTC_A_DV2 (1<<6) #define RTC_A_DV1 (1<<5) #define RTC_A_DV0 (1<<4) #define RTC_A_RS3 (1<<3) #define RTC_A_RS2 (1<<2) #define RTC_A_RS1 (1<<1) #define RTC_A_RS0 (1<<0) /* Register B bits */ #define RTC_B_SET (1<<7) /* if set, may write new time */ #define RTC_B_PIE (1<<6) /* periodic interrupt enabled */ #define RTC_B_AIE (1<<5) /* alarm interrupt enabled */ #define RTC_B_UIE (1<<4) /* update interrupt enabled */ #define RTC_B_SQWE (1<<3) /* square wave enabled */ #define RTC_B_DM (1<<2) /* data mode: 1=binary 0=decimal */ #define RTC_B_2412 (1<<1) /* 1=24 hour mode 0=12 hour mode */ #define RTC_B_DSE (1<<0) /* daylight savings enable */ /* Register C bits */ /* Note that reading C is necessary to acknowledge an interrupt */ #define RTC_C_IRQF (1<<7) /* 1=any interrupt pending */ #define RTC_C_PF (1<<6) /* periodic interrupt pending */ #define RTC_C_AF (1<<5) /* alarm interrupt pending */ #define RTC_C_UF (1<<4) /* update interrupt pending */ #define SECS_PER_MIN 60 #define SECS_PER_HOUR 3600 #define SECS_PER_DAY SECS_PER_HOUR * 24 #define DAYS_PER_WEEK 7 #define SECS_PER_WEEK SECS_PER_DAY * DAYS_PER_WEEK #define SECS_PER_YEAR SECS_PER_WEEK * 52 #define LEAP_YEAR(Y) ( (Y>0) && !(Y%4) && ( (Y%100) || !(Y%400) ) ) uint32_t boottime; static const uint8_t monthDays[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; static uint8_t rtc_bcd_to_binary(uint8_t bcd) { return (bcd & 0x0f) + (bcd >> 4) * 10; } static uint8_t rtc_read_port(uint16_t address) { outb_slow(address, RTC_ADDRESS_PORT); return inb_slow(RTC_DATA_PORT); } static void rtc_write_port(uint8_t value, uint16_t address) { outb_slow(address, RTC_ADDRESS_PORT); outb_slow(value, RTC_DATA_PORT); } static struct rtc_time cached_time; static void rtc_fetch_time() { struct rtc_time t; int addpm = 0; do { t.second = rtc_read_port(RTC_SECONDS); t.minute = rtc_read_port(RTC_MINUTES); t.hour = rtc_read_port(RTC_HOURS); t.day = rtc_read_port(RTC_DAY_OF_MONTH); t.month = rtc_read_port(RTC_MONTH); t.year = rtc_read_port(RTC_YEAR); } while(t.second != rtc_read_port(RTC_SECONDS)); if(t.hour & 0x80) { addpm = 1; t.hour &= 0x7f; } else { addpm = 0; } t.second = rtc_bcd_to_binary(t.second); t.minute = rtc_bcd_to_binary(t.minute); t.hour = rtc_bcd_to_binary(t.hour); if(addpm) t.hour += 12; t.day = rtc_bcd_to_binary(t.day); t.month = rtc_bcd_to_binary(t.month); t.year = rtc_bcd_to_binary(t.year); if(t.year >= 70) { t.year += 1900; } else { t.year += 2000; } cached_time = t; } static void rtc_interrupt_handler(int intr, int code) { rtc_fetch_time(); rtc_read_port(RTC_REGISTER_C); } void rtc_init() { uint8_t status; status = rtc_read_port(RTC_REGISTER_B); status |= RTC_B_UIE; rtc_write_port(status, RTC_REGISTER_B); interrupt_register(40, rtc_interrupt_handler); interrupt_enable(40); rtc_fetch_time(); struct rtc_time t = {0}; rtc_read(&t); boottime = rtc_time_to_timestamp(&t); printf("rtc: ready\n"); } void rtc_read(struct rtc_time *tout) { memcpy(tout, &cached_time, sizeof(cached_time)); } uint32_t rtc_time_to_timestamp(struct rtc_time *t) { int i; uint32_t seconds; seconds = (t->year - 1970) * (SECS_PER_DAY * 365); for(i = 1970; i < t->year; i++) { if(LEAP_YEAR(i)) { seconds += SECS_PER_DAY; } } for(i = 1; i < t->month; i++) { if((i == 2) && LEAP_YEAR(t->year)) { seconds += SECS_PER_DAY * 29; } else { seconds += SECS_PER_DAY * monthDays[i - 1]; } } seconds += (t->day - 1) * SECS_PER_DAY; seconds += t->hour * SECS_PER_HOUR; seconds += t->minute * SECS_PER_MIN; seconds += t->second; return seconds; }