jam/test/test-rl2.js

132 lines
3.2 KiB
JavaScript
Raw Normal View History

2024-08-27 00:15:43 +02:00
// Maze of Torment World
// Dynamic Programming (DP)
var height=7,width=7,start=0;
var UPDATES=15
// 0: free place, 1: start, 2: destination, -1: wall
var f=0,s=1,d=2,w=-1
var maze = [
[s,f,w,d,w,f,f],
[f,f,w,f,w,f,f],
[f,f,w,f,f,f,f],
[f,f,w,w,w,f,f],
[f,f,f,f,f,f,f],
[f,f,f,f,w,w,w],
[f,w,f,f,f,f,f],
]
var states = []
maze.forEach(function (row) {
states=states.concat(row)
})
var rewards = states.map(function (s) {
return s==w?-1:(s==d?1:0)
})
var actions = ['left','right','up','down']
var env = {};
env.steps = 0;
env.iteration = 0;
var way = []
function reset (pr) {
if (pr) print(way.join('\n'))
way = maze.map(function (row) {
return row.map(function (col) { return col==s?1:(col==w?'w':0) })})
env.steps=0;
}
// required by learner
env.getNumStates = function() { return height*width; }
env.getMaxNumActions = function() { return actions.length; }
env.nextState = function(state,action,pr) {
var nx, ny, nextstate;
var x = env.stox(state);
var y = env.stoy(state);
switch (states[state]) {
case f:
case s:
// free place to move around
switch (action) {
case 'left' : nx=x-1; ny=y; break;
case 'right' : nx=x+1; ny=y; break;
case 'up' : ny=y-1; nx=x; break;
case 'down' : ny=y+1; nx=x; break;
}
nextstate = ny*width+nx;
way[ny][nx]=1;
env.steps++;
break;
case w:
// cliff! oh no! Should not happend - see below
// print('Back to start...')
nextstate=start;
reset()
env.iteration++;
break;
case d:
// agent wins! teleport to start
if (pr) print('['+env.iteration+'] Found destination !!!!!!! steps='+env.steps)
reset(pr)
nextstate=start;
env.iteration++;
break;
}
//print(state,action,nextstate)
return nextstate;
}
env.reward = function (state,action,nextstate) {
// reward of being in s, taking action a, and ending up in ns
var reward;
// If the destination was found, weight the reward with the number of steps
// return best reward for shortest path
if (states[state]==d) reward = rewards[state];
else reward = rewards[state];
return reward;
}
env.allowedActions = function(state) {
var x = env.stox(state), y = env.stoy(state);
var actions=[];
if (x>0) actions.push('left');
if (y>0) actions.push('up');
if (x<width-1) actions.push('right');
if (y<height-1) actions.push('down');
return actions
}
// utils
env.stox = function (s) { return s % width }
env.stoy = function (s) { return Math.floor(s / width) }
// create the DQN agent
var model = ml.learn({
algorithm : ml.ML.RL,
kind : ml.ML.DPAgent,
actions : actions,
gamma : 0.9, // discount factor, [0, 1)
environment : env
});
print(model)
print(toJSON(model).length+' Bytes')
reset()
var state = start; // uppel left corner
for(var i=0;i<UPDATES;i++) ml.update(model)
print('Required '+env.iteration+' iterations')
reset()
var timer = setInterval(function(){ // start the learning loop
var action = ml.action(model,state); // s is an integer
//... execute action in environment and get the reward
// print(state,action,states[state])
var ns = env.nextState(state,action,true);
//var reward = env.reward(ns)-0.01
//ml.update(model)
state = ns
}, 100);