// Test 1 var training_data = [ {"color":"blue", "shape":"square", "liked":false}, {"color":"red", "shape":"square", "liked":false}, {"color":"blue", "shape":"circle", "liked":true}, {"color":"red", "shape":"circle", "liked":true}, {"color":"blue", "shape":"hexagon", "liked":false}, {"color":"red", "shape":"hexagon", "liked":false}, {"color":"yellow", "shape":"hexagon", "liked":true}, {"color":"yellow", "shape":"circle", "liked":true} ] var test_data = [ {"color":"blue", "shape":"hexagon", "liked":false}, {"color":"red", "shape":"hexagon", "liked":false}, {"color":"yellow", "shape":"hexagon", "liked":true}, {"color":"yellow", "shape":"circle", "liked":true} ]; var target = "liked"; var features = ["color", "shape"]; var model = ml.learn({ algorithm:ml.ML.C45, data:training_data, target:target, features:features }) print(ml.print(model)) print(toJSON(model).length+' Bytes') print(ml.classify(model,test_data)) // Test 2 var A='A',B='B',C='C',False=false,True=true,CLASS1='CLASS1',CLASS2='CLASS2'; training_data = [ [A,70,True,CLASS1], [A,90,True,CLASS2], [A,85,False,CLASS2], [A,95,False,CLASS2], [A,70,False,CLASS1], [B,90,True,CLASS1], [B,78,False,CLASS1], [B,65,True,CLASS1], [B,75,False,CLASS1], [C,80,True,CLASS2], [C,70,True,CLASS2], [C,80,False,CLASS1], [C,80,False,CLASS1], [C,96,False,CLASS1], ] test_data = [ [B,71,False], [C,70,True], ] model = ml.learn({ algorithm:ml.ML.C45, data:training_data }) print(ml.print(model)) print(ml.classify(model,test_data))