var data = load('test-data-iris.json') var t0=time() var target = "species"; var features = ["length", "width","petal_length","petal_width"]; var datac = ml.preprocess(data,'xy',{features:features,target:target}); var model = ml.learn({ algorithm:ml.ML.ID3, data:data, target:target, features:features }) var t1=time() var result = ml.classify(model,datac.x).map(function (r,i) { return {value:r,y:datac.y[i]}} ) var t2=time() var correct=0,wrong=0; result.forEach(function (r) { if (r.value==r.y) correct++; else wrong++ }); print('Training Data Test: Correct='+correct+', wrong='+wrong); print(toJSON(model).length) print(t1-t0,t2-t1) datac.x = ml.noise(datac.x, {length:0.2, width:0.1, petal_length:0.05, petal_width:0.01 }); // print(datac.x) var result = ml.classify(model,datac.x).map(function (r,i) { return {value:r,y:datac.y[i]}} ) correct=0,wrong=0; result.forEach(function (r) { if (r.value==r.y) correct++; else wrong++ }); print('Test Data Test (Noise): Correct='+correct+', wrong='+wrong);