var data = csv.read('test-cnn-DT.csv'), x, y; data.shift(); x=select(data,0,data[0].length-2); y=select(data,data[0].length-1); var model = ml.learn({ algorithm:ml.ML.CNN, x:x, // [row1=[col1=[z1,z2,..],col2,..],row2,..] y:y, width:28, height:28, depth:1, normalize:[-.5,.5], iterations:100, layers:[ // output Vol is of size 3x4x2 here {type:'input', out_sx:28, out_sy:28, out_depth:1}, {type:'conv', sx:5, filters:8, stride:1, pad:2, activation:'relu'}, {type:'pool', sx:2, stride:2}, {type:'conv', sx:5, filters:16, stride:1, pad:2, activation:'relu'}, {type:'pool', sx:3, stride:3}, {type:'softmax', num_classes:10} ], trainer : {method: 'adadelta', l2_decay: 0.001, batch_size: 10} }); // print(model) for(var i=0;i<100;i++) print(y[i],ml.stats.utils.best(ml.classify(model,x[i]).w))