var x = [[0, 0, 0], [0, 1, 1], [1, 1, 0], [2, 2, 2], [1, 2, 2], [2, 1, 2]]; var y = ['A', 'A', 'B', 'B', 'C', 'C']; var model = ml.learn({ algorithm:ml.ML.SVM, x:x, y:y, threshold:false, // no threshold function on output; highest value of svms is winner labels:['A','B','C'], // multi-SVM C : 15.0, // default : 1.0. C in SVM. tol : 1e-5, // default : 1e-4. Higher tolerance --> Higher precision max_passes : 200, // default : 20. Higher max_passes --> Higher precision alpha_tol : 1e-5, // default : 1e-5. Higher alpha_tolerance --> Higher precision kernel : { type: 'rbf', sigma: 0.5 } // { type: "polynomial", c: 1, d: 5} }); print(toJSON(model).length+' Bytes') print(model) print(model.svms[0]) var test_data =[[0, 1.2, 0], [2.1, 2, 3], [2.1,1.1,2.0] ]; print(ml.classify(model,x)) print(ml.classify(model,x.map(function (row) { return row.map(function (col) { return col+random(-0.3,0.3,0.001) })}))) print(ml.classify(model,test_data)) print(ml.stats.utils.best(ml.classify(model,[1,2,3])))