jam/test/test-rl4.js

153 lines
4.2 KiB
JavaScript

// Maze of Torment World
// Deep-Q Learning (DQN)
var height=7,width=7,start,dest;
// 0: free place, 1: start, 2: destination, -1: wall
var f=0,s=1,d=2,w=-1
var maze = [
[s,f,w,d,w,f,f],
[f,f,w,f,w,f,f],
[f,f,w,f,f,f,f],
[f,f,w,w,w,f,f],
[f,f,f,f,f,f,f],
[f,f,f,f,w,w,w],
[f,w,f,f,f,f,f],
]
// world states
var states = []
maze.forEach(function (row,j) {
states=states.concat(row)
row.forEach(function (cell,i) {
if (cell==s) start=i+j*width;
if (cell==d) dest={x:i,y:j}
})
})
var way = []
function reset (pr) {
if (pr) print(way.join('\n'))
way = maze.map(function (row) {
return row.map(function (col) { return col==s?1:(col==w?'w':0) })})
env.steps=0;
env.good=0;
env.error=0;
env.iteration++;
}
var actions = ['left','right','up','down']
// Agent sensor states (perception)
// Distances {N,S,W,E} to boundaries and walls, distance
var sensors = [0,0,0,0,0]
var env = {};
env.steps = 0;
env.iteration = 0;
env.error = 0;
env.good = 0;
env.last = 0;
// required by learner
env.getNumStates = function() { return sensors.length /*!!*/ }
env.getMaxNumActions = function() { return actions.length; }
// internals
env.nextState = function(state,action) {
var nx, ny, nextstate;
var x = env.stox(state);
var y = env.stoy(state);
// free place to move around
switch (action) {
case 'left' : nx=x-1; ny=y; break;
case 'right' : nx=x+1; ny=y; break;
case 'up' : ny=y-1; nx=x; break;
case 'down' : ny=y+1; nx=x; break;
}
nextstate = env.xytos(nx,ny);
if (nx<0 || ny<0 || nx >= width || ny >= height ||
states[nextstate]==w) {
nextstate=-1;
return nextstate;
}
way[ny][nx]=1;
env.steps++;
return nextstate;
}
env.reward = function (state,action,nextstate) {
// reward of being in s, taking action a, and ending up in ns
var reward;
var dist1=Math.sqrt(Math.pow(dest.x-env.stox(nextstate),2)+
Math.pow(dest.y-env.stoy(nextstate),2))
var dist2=Math.sqrt(Math.pow(dest.x-env.stox(state),2)+
Math.pow(dest.y-env.stoy(state),2))
if (nextstate==env.laststate) reward = -10; // avoid ping-pong
else if (nextstate==-1) reward = -100; // wall hit or outside world
else if (dist1 < 1) reward = 100-env.steps/10; // destination found
else reward = (dist1-dist2)<0?dist1/10:-dist1/10; // on the way
env.laststate=nextstate;
return reward;
}
// Update sensors
env.perception = function (state) {
var i,
dist=Math.sqrt(Math.pow(dest.x-env.stox(state),2)+
Math.pow(dest.y-env.stoy(state),2)),
x = env.stox(state),
y = env.stoy(state),
sensors = [0,0,0,0,dist]; // N S W E
// Distances to obstacles
for(i=y;i>0;i--) { if (states[env.xytos(x,i)]==w) break }
sensors[0]=y-i-1;
for(i=y;i<height;i++) { if (states[env.xytos(x,i)]==w) break }
sensors[1]=i-y-1;
for(i=x;i>0;i--) { if (states[env.xytos(i,y)]==w) break }
sensors[2]=x-i-1;
for(i=x;i<width;i++) { if (states[env.xytos(i,y)]==w) break }
sensors[3]=i-x-1;
return sensors
}
// utils
env.stox = function (s) { return s % width }
env.stoy = function (s) { return Math.floor(s / width) }
env.xytos = function (x,y) { return x+y*width }
reset()
// create the DQN agent
var model = load('/tmp/rl.json')
print(model)
print(toJSON(model).length+' Bytes')
var state = start; // world state. upper left corner
// The agent searches the destination with random walk
// If the the destination was found, it jumps back to the start
later(1,function(task){ // start the learning loop
sensors = env.perception(state);
var action = ml.action(model,sensors); // s is a vector
//... execute action in environment and get the reward
var ns = env.nextState(state,action);
var reward = env.reward(state,action,ns)
if (states[ns]==d) {
// destination found
print('iteration='+env.iteration,', reward='+reward,' action: steps='+env.good,'error='+env.error+' tderror='+
model.tderror)
ns=start;
reset(true);
}
if (ns==-1) env.error++;
else env.good++;
// print(state,ns,sensors,reward)
ml.update(model,reward)
state = ns==-1?state:ns
// state = ns==-1?start:ns
if (reward > 98.4) {
save('/tmp/rl.json',model);
kill(task);
}
return true;
});