
Automated Feature Extraction with

Machine Learning and Image Processing

Prof. Dr. Stefan Bosse

University of Siegen - Dept. Maschinenbau

University of Koblenz - Dept. Computer Science

1 / 51

Data Storage and Aggregation

 Representation of Data

 Storage of Data

 Access of data

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation -

2 / 51

Data Storage

In general, data and their values can be stored in/on:

File Systems, such as FAT32/VFAT, Ext 3, NTFS, ISO,

Organization by hierarchical directories and files

Databases, such as SQL, NoSQL, ...

Flat tables only

Cloud Storage, such as Seafile

Files, linear storage container, structured, with, e.g., numpy or HDF(5)

 But: The question is not where to store the data, the question is how to

organize and access the data!

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Storage

3 / 51

File System

A file system is composed of:

Files ⇒ data container (linear memory model)

Directories ⇒ reference tables assigning files or other directory references to

names

A file system organizes data by a directory (folder) tree:

A directory is a node in an ordered graph

There is a root directory

Children of a directory can be leaves (files) or deeper directories

Each file and directory is associated with a name

File system tree iterations are referenced by paths

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Storage

4 / 51

[https://www3.nd.edu/pbui/teaching/cse.30341.fa18/project06.html]

 Besides the organization structure, a file system can provide data structures

and block level organization of data used for the storage on hardware devices

Fig. 1. Simple file system layout (linear file model)

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Storage

5 / 51

https://www3.nd.edu/pbui/teaching/cse.30341.fa18/project06.html

Segments

Magic: The first field is always the MAGIC_NUMBER or 0xf0f03410. The format routine places

this number into the very first bytes of the super-block as a sort of file system "signature". When the

file system is mounted, the OS looks for this magic number. If it is correct, then the disk is assumed

to contain a valid file system. If some other number is present, then the mount fails, perhaps because

the disk is not formatted or contains some other kind of data.

Blocks: The second field is the total number of blocks, which should be the same as the number of

blocks on the disk.

InodeBlocks: The third field is the number of blocks set aside for storing inodes. The format routine

is responsible for choosing this value, which should always be 10% of the Blocks, rounding up.

Inodes: The fourth field is the total number of inodes in those inode blocks.

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Storage

6 / 51

[https://www3.nd.edu/pbui/teaching/cse.30341.fa18/project06.html]

Fig. 2. I-nodes and block references

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Storage

7 / 51

https://www3.nd.edu/pbui/teaching/cse.30341.fa18/project06.html

Data Types

Raw data characterized by:

Dimension

Size

Aggregates

Data types

Vector and time signal data

Matrix and tensor data (arrays)

Image data (Gray / intensity level, RGBA)

Data tables (data frames) with rows of records (columns)

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Types

8 / 51

Databases

SQL

SQL databases organize data in tables.

A table is organized in rows and columns

A table is part of a database

Multiple databases can co-exist and handled by one database server

Data types:

Number (numeric)

Text

Binary data (blob)

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

9 / 51

Fig. 3. Basic SQL Server architecture

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

10 / 51

[Murugesan et al., International Journal of Applied Engineering Research, 2015]

Page

The page is the fundamental unit of data storage and internally, SQL server

organizes and stores data in smaller units known as pages.

Fig. 4. Data Pages storing tables - Schematic Diagram

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

11 / 51

[]

Tables

Fig. 5. SQL table structure with rows and columns

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

12 / 51

Operations

Create

Create a new empty table with a specific schema (type signature of the columns. A

table is referenced by a (data base) unique name.

Insert

Insert rows into an existing table.

Update

Update fields or entire existing rows

Select

Select fields (columns) or entire rows based on patterns

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

13 / 51


Tables cannot be nested. The data base table space is flat! But specific tables

can be used to reference other tables (like I-nodes, directories in file systems,

or sections in HDF structures)

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

14 / 51


Tables cannot be nested. The data base table space is flat! But specific tables

can be used to reference other tables (like I-nodes, directories in file systems,

or sections in HDF structures)

 Meta data, arrays, or other auxiliary structures must be encoded to text and

decoded back by the user, e.g., by using the JSON format!

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

15 / 51


Tables cannot be nested. The data base table space is flat! But specific tables

can be used to reference other tables (like I-nodes, directories in file systems,

or sections in HDF structures)

 Meta data, arrays, or other auxiliary structures must be encoded to text and

decoded back by the user, e.g., by using the JSON format!

 Be aware of memory data layer hierarchy affecting performance (read/write):

Data and DB Cache, Main Memory, File system, Storage Device(s).

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

16 / 51

[https://www.guru99.com/sql-server-architecture.html]

Fig. 6. Detailed and advanced SQL server architecture

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

17 / 51

https://www.guru99.com/sql-server-architecture.html

MySQL

One of the top open-source relational database management systems (RDBMS)

Data security layers to protect sensitive data.

Scalability for when there are large amounts of data.

Open source RDBMS with two separate licensing models.

Multi-master ACID transactions through MySQL Cluster ((Atomicity, Consistency,

Isolation, and Durability).

Supports both structured data (SQL) and semi-structured data (JSON).

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

18 / 51

SQLite3

Minimal but powerful SQL implementation (with page caching) that can be packed

into on C programming language file

Our sqld server bases on a library version of SQLite3

Databases are store in generic files

Underlying filesystem has impact on performance

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

19 / 51

Apache Cassandra

Is an open-source and highly scalable NoSQL database management system

Handles massive volumes of data.

One of the most scalable databases with automatic sharding.

Offers linear horizontal scaling.

Decentralized database with multi-datacenter replication and automatic replication.

Fault tolerant by automatically replicating data to multiple nodes.

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

20 / 51

PostgreSQL

It extends the SQL language and combines it with various features to scale and

safely store highly complicated data workloads.

Highly secure with a robust access-control system.

Offers ACID transactional guarantee (Atomicity, Consistency, Isolation, and

Durability)

PostgreSQL extension Citus Data offers Distributed SQL features.

Advanced indexes such as Partial Index and Bloom Filters.

Supports structured data (SQL), semi-structured data (JSON, XML), key-value, and

spatial data.

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

21 / 51

MonogDB

It was designed to specially handle document data

Horizontal scaling via auto-sharding (method for distributing data across multiple

machines).

Built-in replication through primary-secondary nodes.

Distributed multi-document ACID transactions with snapshot isolation.

Full-text search engine and data lake built on MongoDB

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

22 / 51

MLDB

Machine Learning Database, or MLDB, is an open-source system aimed at tackling

big data machine learning tasks.

It can be used for data collection and storage through the training of machine

learning models, or to deploy real-time prediction endpoints.

MLDB is one of the easier datasets to use, since it provides a comprehensive

implementation of the SQL SELECT statement.

It treats datasets as tables, making it easier to learn and use for data analysts already

versed in an existing Relational Database Management System (RDBMS).

Supports vertical scaling with higher efficiency.

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

23 / 51

... more information ...

https://www.unite.ai/10-best-databases-for-machine-learning-ai

Fig. 7. Horizontal Vs. Vertical Scaling

Horizontal scaling refers to adding additional nodes or machines to the

infrastructure to cope with new data demands.

Vertical scaling describes adding additional resources to a system so that it meets

data demands. Ressources: CPU Power, Memory and storage capacity.

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Databases

24 / 51

https://www.unite.ai/10-best-databases-for-machine-learning-ai

Data Types in R


The R programming language and computational system is widely used and

outstanding software for, but not limited to, statistics and big table-based data

processing.

Core data types are:

number (numeric)

boolean

string (character text)

function

That's all folks!

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Types in R

25 / 51

Data Types in R

But data can be organized in:

Vector 1-dim (poly-sorted, i.e., not compacted with heterogeneous element types

possible)

Matrix 2-dim

Array n-dim with Typed Arrays (mono-sorted. i.e., compacted/packed and each

element with same data type):

Int8, Uint8 (Integer/Unsigned Integer)

Int16, Uint16

Int32, Uint32

Float32, Float64

List as data records

Data frame providing tables with rows and columns

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Types in R

26 / 51

Data Types in R

 # R R+
v1 = c(1,2,3,4) v1=[1,2,3,4]
l1 = list(x=1,y=1,z=0) l1={x=1,y=1,z=0}
m1 = matrix(0,3,2) m1=[|1,2;3,4;5,6|]
a1 = array(0,c(3,2,2)) a1=array(0,[3,2,2])
df1 = data.frame(
 a=c(1,2,3,4), a=[1,2,3,4],
 b=c('A','B','C','D'), b=['A','B','C','D'],
 c=list(c(1,2),c(3,4)..), c={[1,2],[3,4],..},
 ...
)

Ex. 1. R list, vector, matrix, and array data

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Types in R

27 / 51

Data Types in R

 SQL tables are a sub-set of R data frames!

Data tables can be use to bind meta and analysized data to the original measured

data, e.g., images.

Columns (and rows for 2-dim data) of vectors, lists, matrix, and data frames can be

accessed and modified by a numerical or name index (if available):

l1={x=1,y=1,z=0} ==> l1$x=0 l1[[1]]=0 print(l1[1])
c1=[1,2,3,4] c1[2]=c1[1]+1
m1 = matrix(0,3,2) m1[2,1]=0
df1 = data.frame(df[1] df$a df1[[1]] df[1,2]
 a={1,2,3,4]
)

Ex. 2. R access of list, vector, matrix, and data frame elemnts (and columns)

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Types in R

28 / 51

Image Data

Formats:

RGBA ⇒ Uint8 [Red,Green,Blue,Alpha] [col][row]

RGB ⇒ Uint8 [Red,Green,Blue] [col][row]

GRAY8 ⇒ Uint8 [col][row]

GRAY with n-bits per pixel (8,16,24,32)

 Data layout is relevant! Commonly, first-level index are the color channels

[RGB], followed by ordering of columns, finally organized in rows

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Image Data

29 / 51

[DOI: 10.1109/CLEI.2015.7359995]

Image Data

G G G G G G ...
RGB RGB RGB RGB RGB RGB ...
RGBA RGBA RGBA RGBA RGBA RGBA ...
───────────────────────────
R1[C1 C2 C3] R2[C1 C2 C3] ...

Ex. 3. Memory layouts of different image formats

Fig. 8. Structure of the RGB image as a sequence of bytes in a linear memory or file model

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Image Data

30 / 51

Images and Matrices

A 2-dim matrix can be considered as a graylevel intensity image.

Direct numeric on pixels is possible

Many algorithms process graylevel images (only), like edge detectors

RGB images require an 3-dim array. The third dimension represents the color

channels.

In R, an image has commonly its own data type cimg.

A matrix can be converted to an image (cimg) and vice versa.

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Images and Matrices

31 / 51

Images and Matrices

m = matrix(runif(100),10,10)
m.i = as.cimg(m)
i = load.image('http://edu-9.de/assets/test.png',
 format='RGBA')
i.m = as.matrix(i) # converts automatically to graylevel
plot(i)
plot(i.m,auto.scale=TRUE)

Ex. 4. Image to matrix and vice versa

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Images and Matrices

32 / 51

Image Stacks

An image file contains commonly one image

But indexed image stacks stored in one file are supported by many image file

formats, e.g., TIFF

If an image stack is loaded, typically a vector (or list) of images is returned.

Reconstructed CT slice image stacks contained in one file are typical examples

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Image Stacks

33 / 51

Image Data Compression

The memory or file size of a flat image is:

Size(im) = w ⋅ h ⋅ d ⋅ b

with w and h as the width (number of columns) and height (number of rows) of the

image, respectively, d as the channel depth (1,3,4), and b as the number of Bytes per

pixel and channel (1,2,4 → 8, 16, 32 Bits)

To reduce the file size, the image data can be compressed. We distinguish:

Reversible compression algorithms like LZW (TIFF)

Irreversible compression algorithms like JPEG

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Image Data Compression

34 / 51

Image Data Compression

 Never use irreversible compression since it causes artifacts and noise on

decompression!



Compression of graylevel images (one channel) normally has no benefit (low

compression ratio, but high computational times). The same fact holds for high

precision measured images (more than 8 Bits per pixel). Detector noise will

prevent efficient compression.

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Image Data Compression

35 / 51

Data Frames

The function data.frame() creates data frames, tightly coupled collections of variables

which share many of the properties of matrices and of lists, used as the fundamental data

structure by most of R's modeling software.

A data frame is a list of variables of the same number of rows with unique row

names, given class "data.frame". If no variables are included, the row names

determine the number of rows.

The column names should be non-empty, and attempts to use empty names will have

unsupported results. Duplicate column names are allowed, but you need to use

check.names = FALSE for data.frame to generate such a data frame. However, not

all operations on data frames will preserve duplicated column names: for example

matrix-like sub-setting will force column names in the result to be unique.

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Frames

36 / 51

Data Frames

 Structured files formats like CSV or JSON can be directly converted to data

frames!

 There is a large set of low- and high-level operations that can be applied to

data frames (as well as matrices).

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Frames

37 / 51

Synthetic Images

Matrices as well as empty images can be used to create synthetic images by

geometric operations:

Additive drawing of figures like circles, ellipses, rectangles, lines with and

without filling (color and graylevel)

Drawing polynomial or exponential 2-dim functions, e.g., Gauss function

Subtractive or multiplicative image fusions

Synthetic images can be used for:

1. Testing of algorithms

2. Training of ML models

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Synthetic Images

38 / 51

Synthetic Images

use math,imager,plot,geometry
im = load.image('pathto.tiff',format='GRAY')
m.corr = matrix(0,height(im),width(im))
draw.gaussian(m.corr,min=0.5,max=1,sigmax=150,sigmay=100)
im.corr = im/m.corr

Ex. 5. Creating of synthetic images by using geometric and matrix operations for image intensity

normalization

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Synthetic Images

39 / 51

File Data Formats

CSV

Comma Separated Value format (text)

JSON

JavaScript Object Notation (text)

XML

Extensible Meta Language (text)

YAML

Yet Another Meta Language (text)

NumPy

Numerical Python Format (binary)

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - File Data Formats

40 / 51

JSON

Array and record structure (nested, tree)

{
 "employee": {
 "name": "sonoo",
 "salary": 56000,
 "married": true,
 "awards" : [1920,1990,2000]
 }
}

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - File Data Formats

41 / 51

CSV

Flat table (not nested) with values separated by delimiter (e.g., "," or any other

delimiter like the tabulator character)

Numbers and text are valid values

Each line in the file is one row in the data table

All rows should contain same number of values

x,y,z,class
1,2,3,"A"
1,4,2,"B"
4,5,0,"A"

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - File Data Formats

42 / 51

CSV

 In R CSV files are represented by (converted to) data frames!

use csv
text = 'x,y,z\n1,2,3\n4,5,6\n7,8,9'
df = parse(text)
df = read.csv('pathto.csv',sep=',',header=TRUE)

Ex. 6. R CSV reader

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - File Data Formats

43 / 51

YAML

 YAML supports nested data structures, but table-like data is difficult to

maintain.

martin:
 name: Martin D'vloper
 job: Developer
 skill:
 - a
 - b
 - c

Ex. 7. Lists and records in YAML

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - File Data Formats

44 / 51

Data Flow Architecture


The entire data processing architecture is a graph of computational nodes, data

sources, and data sinks, connected by event-based channels. Nodes are

connected via input and output ports.

Data Source

A data source node provides access to data, e.g., from an SQL database or from the

file system. There are read and write events. Data tokens are created on request (by a

read event trigger, e.g.).

Data Sink

A data sink nodes consumes data tokens and displays them. Typical display types

are textual information, tables, and plots.

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Flow Architecture

45 / 51

Computational Functions

A computational node processes data read from input ports and writes the processed

data on output ports.

Examples are:

Statistics (from data tables)

Matrix operations (in-place or by creating new Matrix data)

Image operations and transformations, filters

Time-Frequency transformations, convolution, wavelet transformations

Merging of data, splitting of data, wrapping and unwrapping of data

Data format conversion

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Flow Architecture

46 / 51

Fig. 9. Processing graph and data flow architecture with data source, processing, and sink nodes. Event-based

data flow architecture and event chains. New data provided by a node is propagated to all child nodes.

Parameter changes initiate a re-computation (or display), too.

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Flow Architecture

47 / 51

SQL-RPC API

use sql,json
db = connect("localhost:9999")
mytable.schema = db::schema("mytable")
mytable.nrow = db::nrow("mytable")
mytable.data = db::read("mytable")
transform(mytable.data,c=as.vector(c,mode="uint16"))
data = db::read("mytable",b=fromJS(b),
 c=as.vector(c,mode="uint16"))

Ex. 8. R+ SQL operations

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Flow Architecture

48 / 51

SQLD

sqld consists of a slim native C-code implementation of the sqlite3 server storing

SQL data bases in plain binary files on the local file system.

SQL data bases can be accessed by a Remote Procedure Call JSON interface,

basically mapping SQL operations on a JSON structure (both request and reply).

HTTP is used to access the JSON-RPC API

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Flow Architecture

49 / 51

Fig. 10. SQLD architecture and JSON-RPC interface

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Data Flow Architecture

50 / 51

Summary

Data processing is performed by using a sequential programm language, R+

Data can be represented by different data types, structures, formats, supported

by R+

Data access is provided by files, HTTP services, or SQL data bases in an

unified way

PD Stefan Bosse - AFEML - Module B: Data Storage and Aggregation - Summary

51 / 51

