
Automated Feature Extraction with Machine

Learning and Image Processing

Prof. Dr. Stefan Bosse

University of Siegen - Dept. Maschinenbau

University of Koblenz - Dept. Computer Science

1 / 44

Image Analysis with CNN

CNNs are a useful class of models for both supervised and unsupervised learning

paradigms.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN -

2 / 44

The CNN learns to map a given image to its corresponding category by detecting a

number of abstract feature representations, ranging from simple to more complex

ones.

These discriminative features are then used within the network to predict the

correct category of an input image.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN -

3 / 44

Applications of Convolutional Neural Networks

1. Classification of entire images

2. Detection of objects (partial segments of an image)

3. Detection and classification of objects

4. Regression of a numerical target variable

5. Anomaly Detection (non-classified)

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Applications of Convolutional Neural Networks

4 / 44

Layers of CNN

1. Pre-processing

2. Convolutional Layer

3. Pooling Layer

4. Fully-connected Neural Node Layer

5. Softmax Layer

6. (Transposed Convolutional Layers)

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Layers of CNN

5 / 44

[Khan, A Guide to CNN for Computer Vision, 218]

Pre-processing

Mean-subtraction

The input patches (belonging to both train and test sets) are zero- centered by subtracting

the mean computed on the entire training set. Given N training images, each denoted by

x ∈ R
h × w × c

,we can denote the mean-subtraction step as follows:

x̂0 = x̂ − ¯̄x̄, ¯̄x̄ =
N

∑
i=1

xi

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Pre-processing

1

N

6 / 44

Normalization

The input data (belonging to both train and test sets) is divided with the standard

deviation of each input dimension (pixels in the case of an image) calculated on the

training set to normalize the standard deviation to a unit value. It can be represented as

follows:

x̂n =

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Pre-processing

x0

√∑N
i=1(xi−¯̄x̄)

2

N−1

7 / 44

[Xuli Rao et al., 2021]

PCA Whitening

The aim of PCA whitening is to reduce the correlations between different data

dimensions by independently normalizing them.

This approach starts with the zero-centered data and calculates the covariance matrix

which encodes the correlation between data dimensions.

This covariance matrix is then decomposed via the Singular Value Decomposition

(SVD) algorithm and the data is decorrelated by projecting it onto the eigenvectors

found via SVD.

Afterward, each dimension is divided by its corresponding eigenvalue to normalize all

the respective dimensions in the data space.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Pre-processing

8 / 44

[Sumeet Saurav et al, 2021]

Local Contrast Normalization

This normalization scheme gets its motivation from neuroscience. As the name depicts,

this approach normalizes the local contrast of the feature maps to obtain more prominent

features.

It first generates a local neighborhood for each pixel, e.g., for a unit radius eight

neighboring pixels are selected.

Afterward, the pixel is zero-centered with the mean calculated using its own and

neighboring pixel values.

Sim-ilarly, the pixel is also normalized with a standard deviation of its own and

neighboring pixel values (only if the standard deviation is greater than one).

The resulting pixel value is used for further computations.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Pre-processing

9 / 44

Convolutional Layer

In contrast to kernel-based filtering operations using commonly 3 × 3 two-dimensional

filters, convolution can be performed here with any kernel size and dimension.

In contrast to kernel-based filtering operations, the kernel parameters (weights) are not

pre-determined. They are evolved during the ML training process.

Fig. 1. Convolution with N filters applied to one input image (stride: shift of filter position in each dimension)

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

10 / 44

Padding, Striding, and Dilation

Fig. 2. The filter is slided onto the input feature map to compute the corresponding value in the output feature map.

The 2 × 2 filter (shown in green) is multiplied with the same sized region (shown in orange) within a 4 × 4 input

feature map and the resulting values are summed up to obtain a corresponding entry (shown in blue) in the output

feature map at each convolution step. Filter Image Filter

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

11 / 44

Padding, Striding, and Dilation

Fig. 3. Convolution layer with a zero padding of 1 and a stride of 2

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

12 / 44

For a filter with size f × f pixels, an input feature map with size h × w pixels, a stride length s,

and zero-padding of p, the output feature dimensions are given by:

ho = ⌊ ⌋,wo = ⌊ ⌋

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

h − f + s + p

s

w − f + s + p

s

13 / 44

Padding

The padding convolutions are usually categorized into three types based on the involve-

ment of zero-padding.

Valid Convolution is the simplest case where no zero-padding is involved. The filter always

stays within “valid” positions (i.e., no zero-padded values) in the input feature map and the

output size is reduced by f - 1 along the height and the width.

Same Convolution ensures that the output and input feature maps have equal (the “same”)

sizes. To achieve this, inputs are zero-padded appropriately. For example, for a stride of 1,

the padding is given by p=└f/2┘. This is why it is also called “half ” convolution.

Full Convolution applies the maximum possible padding to the input feature maps before

convolution. The maximum possible padding is the one where at least one valid input value

is involved in all convolution cases. Therefore, it is equivalent to padding f - 1 zeros for a

filter size f so that at the extreme corners at least one valid value will be included in the

convolutions.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

14 / 44

Receptive Field


Instead of defining convolutional filters that are equal to the spatial size of the

inputs, we define them to be of a significantly smaller size compared to the input

images (e.g., in practice 3 × 3, 5 × 5, and 7 × 7 filters are used to process images

with sizes such as 110 × 110, 224 × 224, and even larger).

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

15 / 44

Receptive Field

This design provides two key benefits: (a) the number of learn-able parameters are

greatly reduced when smaller sized kernels are used; and (b) small-sized filters ensure

that distinctive patterns are learned from the local regions corresponding to, e.g.,

different object parts in an image.

The size (height and width) of the filter which defines the spatial extent of a region,

which a filter can modify at each convolution step, is called the “receptive field” of the

filter.

Note that the receptive field specifically relates to the spatial dimensions of the input

image/features. When

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

16 / 44

Extending the Receptive Field: Delation

In order to enable very deep models with a relatively reduced number of parameters, a

successful strategy is to stack many convolution layers with small receptive field.

However, this limits the spatial context of the learned convolutional filters which only

scales linearly with the number of layers. In applications such as segmentation and

labeling, which require pixel-wise dense predictions, a desirable characteristic is to

aggregate broader contextual information using bigger receptive fields in the

convolution layer.

 Dilated convolution is an approach which extends the receptive field size, without

increasing the number of parameters.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

17 / 44

Extending the Receptive Field: Delation

Fig. 4. Convolution with a dilated filter where the dilation factor is d = 2

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

18 / 44

Extending the Receptive Field: Delation

For a filter with size f × f pixels, an input feature map with size h × w pixels, a stride length s,

zero-padding of p, and dilation d, the output feature dimensions are given by:

ho =),wo =)

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

⌊(h − f − + s + 2p)⌋d−1
f−1

s

⌊(w − f − + s + 2p)⌋d−1
f−1

s

19 / 44

Fig. 5. The effective receptive field with respect to the input image is shown in orange at each convolution layer.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

20 / 44

Convolution with R

use math,plot
m = matrix(runif(100*100),100,100)
plot(m,auto.scale=TRUE)
k = [|
 1,0,2;
 3,1,-3;
 2,0,-1
|]
m.conv = convolution(m,k,padding=0)
print(summary(m.conv))
plot(m.conv,auto.scale=TRUE)

Ex. 1. Convolution operation in R(+)

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

21 / 44

Nonlinearity

The weight layers in a CNN (e.g., convolutional and fully connected layers) are often

followed by a nonlinear transfer (or a piece-wise linear) function.

The transfer (or activation) function takes a real-valued input and squashes it within a

small range such as [0; 1] or [-1; +1].

The application of a nonlinear function after the weight layers is highly important,

since it allows a neural network to learn nonlinear mappings.

In the absence of nonlinearities, a stacked network of weight layers is equivalent to a

linear mapping from the input domain to the output domain.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

22 / 44

Sigmoid (logistic)

The sigmoid activation function takes in a real number as its input, and outputs a number in

the range of [0,1]. It is defined as:

fsigm(x) =

Tanh

The tanh activation function implements the hyperbolic tangent function to squash the input

values within the range of [�1; 1]. It is represented as follows:

ftanh(x) =

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

1

1 + e−x

x

√1 + x2

23 / 44

Rectifier Linear Unit

The ReLUis a simple activation function which is of a special practical importance because

of its quick computation. A ReLU function maps the input to a 0 if it is negative and keeps

its value unchanged if it is positive. This can be represented as follows:

frelu(x) = max (0,x)

Noisy RELU

The noisy version of ReLU adds a sample drawn from a Gaussian distribution with mean

zero and a variance which depends on the input value (σ(x)) in the positive input. It can be

represented as follows:

fnrelu(x) = max (0,x + ϵ), ϵ ∈ N(0,σ(x))

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

24 / 44

Leaky and parametric ReLU

The rectifier function completely switches off the output if the input is negative. A leaky

ReLU function does not reduce the output to a zero value, rather it outputs a down-scaled

version of the negative input. This function 8and more general with parameter p) is

represented as:

fp-relu(x) = {
x if x ≥ 0

px if x ≤ 0

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

25 / 44

Fig. 6. Different transfer/activation functions applied to product-sums (convolutional or neural network layer)

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Convolutional Layer

26 / 44

Pooling Layer

Apooling layer operates on blocks of the input feature map and combines the feature

activations. This combination operation is defined by a pooling function such as the

average or the max function. Similar to the convolution layer, we need to specify the

size of the pooled region and the stride.

Convolution is pooling with a weighted sum (product sum), poolign applies different

mapping functions, e.g., a maximum or relu function.

The max pooling operation is commonly used, where the maximum activation is chosen

from the selected block of values.

This window is slided across the input feature maps with a step size defined by the

stride

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Pooling Layer

27 / 44

Fig. 7. The operation of max-pooling layer when the size of the pooling region is 2 × 2 and the stride is 1.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Pooling Layer

28 / 44

(Fully Connected) Neural network Layer

Fully connected layers correspond essentially to convolution layers with filters of size 1 × 1.

Each unit in a fully connected layer is densely connected to all the units of the previous

layer.

In a typical CNN, fully-connected layers are usually placed toward the end of the

architecture.

However, some successful architectures are reported in the literature which use this

type of layer at an intermediate location within a CNN.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - (Fully Connected) Neural network Layer

29 / 44

Its operation can be represented as a simple matrix multiplication followed by adding a

vector of bias terms and applying an element-wise nonlinear function:

→y = f(Ŵ
T
→+→b)

with W as the weights matrix and b as the bias vector (offset shift).

One node of the FNN (u → v) can be compuetd by a product sum and the application of

the transfer function f:

v = f(
n

∑
i=1

wiui + b)

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - (Fully Connected) Neural network Layer

30 / 44

Fig. 8. A Fully-connected Neural Network architecture

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - (Fully Connected) Neural network Layer

31 / 44

Softmax Layer

Another transfer function usefull for classification that is used in the output layer of

multilayer pattern recognition networks is the softmax function. This transfer function

has the form:

σ(→z)i =

→z = (z1, z2, . . , zn), |z| = n


The outputs of the softmax transfer function can be interpreted as the probabilities

associated with each class normalized with all other probabilities. Each output will

fall between 0 and 1, and the sum of the outputs will equal 1.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Softmax Layer

ezi

∑|z|
k=1e

zk

32 / 44

Locality and Invariance

Locality can be defined in terms of adjacency of dimensionality of signals under a special

ordering.

A set of connections are local if they are connected to adjacent dimensions in the

ordering of the signal.

In the case of images, this corresponds to neighboring pixels.

One of our aims in looking at locality for images is that we have pixels that are ordered

in a sequence and we want to exploit the relationship between pixels in this ordering

(e.g., composing objects like pores or cracks).

There are cases, other than images, where this is also used. For instance, in the case of audio signals the ordering is

by time. In the case of images, the ordering is naturally the ordering of pixels in the image itself

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Locality and Invariance

33 / 44

 A classifier or regression function applied to images should be indenpendent

(invariant) to absolute position, rotation, and scaling.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Locality and Invariance

34 / 44

Training Classes

Negative Training

A predictor model is trained on a limited set of well known features, e.g., damages, but

including the base-line reference (i.e., none of the damage features). This is basically

supervised learning of classifiers or regression models with labelled data.

Positive Training

A generative predicotr model is trained with base-line (reference) data only containing

no target features, e.g., damages. The generative model should reconstruct its input data,

i.e., it is an Encoder-Decoder architecture compressing the input (e.g., an X-ray image or

GUW signal) and finally decompressing the code again to reconstruct the original data

(with slight difefrence). If there is a dmaage feature inside the input data, the model is

not able to reconstruct the changed data, and an error occurs ⇒ Anomaly Detector. This

is basically unsupervised learning.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Training Classes

35 / 44

ROI and Anomaly Detection in Radiography Data

Goal. Detect pores in Aluminum Die casted plates in X-ray radiography data

automatically.

System. Industrial X-ray Radiography devices providing different resolutions and X-

ray energies, prepared AluDC plates.

Methods and Algorithms. Semantic Pixel Classifier with a simple CNN, DBSCAN

pixel clustering, Ellipse Fitting.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - ROI and Anomaly Detection in Radiography Data

Stefan Bosse and Dirk Lehmhus. Automated Detection of hidden Damages and Impurities in Aluminum

Die Casting Materials and Fibre-Metal Laminates using Low-quality X-ray Radiography, Synthetic X-ray

Data Augmentation by Simulation, and Machine Learning, arXiv:2311.12041 [cs.CV] (2023)

36 / 44

Fig. 9. Pore marking in X-ray images by using a moving window semantic pixel classifier (CNN)

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - ROI and Anomaly Detection in Radiography Data

37 / 44

ROI and Anomaly Detection in Radiography Data

Fig. 10. Examples of pore marking using a moving window semantic pixel classifier (CNN) and synthetic X-ray

image data

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - ROI and Anomaly Detection in Radiography Data

38 / 44

ROI and Anomaly Detection in 3D CT Data

Goal. Detect regions of interest in CT data volumes automatically. A ROI bases on

anomaly detection and is a candidate for a damages: Breakage, impurity, delamination,

cracks.

System. Micro X-ray CT devices providing different resolutions and X-ray energies,

prepared composite plates (e.g., GLARE).

Methods and Algorithms. Edge detection using kernel filters and gradient algorithms,

Z-profiling slicing the CT volume along z-axis (depth), anomaly marking by LSTM,

CNN, and SOM, threshold discrimination.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - ROI and Anomaly Detection in 3D CT Data

Chirag Shah, Stefan Bosse, and Axel von Hehl. Taxonomy of Damage Patterns in Composite Materials,

Measuring Signals, and Methods for Automated Damage Diagnostics, Materials 15 (MDPI), no. 13

(2022): 4645

39 / 44

Supervised CNN

Fig. 11. Z-profile signals as 1D images as input for a CNN damage classifier (ND: No damage class, D1: Damage 1,

D2: Damage 2, and so on)

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - ROI and Anomaly Detection in 3D CT Data

40 / 44

Supervised CNN

Fig. 12. (Left) Damage feature maps retrieved from four different CNN classifiers and for the specimen A (training

and prediction), B, C, and D) (Right) CT image volume and selected x‐y slice visualization (A‐B) With centred

resin defect in the PREG layer

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - ROI and Anomaly Detection in 3D CT Data

41 / 44

Unsupervised SOM

Fig. 13. Principle concept of Self-organising Maps (SOM). The neural node set {n} (squares, left side) represents a

feature map {f} (circles, right side)

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - ROI and Anomaly Detection in 3D CT Data

42 / 44

Fig. 14. SOM feature maps of the z-signal volumes for different specimen and with different SOM network sizes

(rows × columns); Specimen A: Sharp resin washout, B: fuzzy resin washout; C: base-line; D: large area

delamination

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - ROI and Anomaly Detection in 3D CT Data

43 / 44

Summary

Further depth reading: A Guide to ConvolutionalNeuralNetworks for Computer Vision,

Khan et al., 2018

CNN consists of different layers: Stacked convolutional layers, pooling layers, fully-

connected neural layers, and softmax layers for classification.

The CNN learns to map a given image to its corresponding category by detecting a

number of abstract feature representations, ranging from simple to more complex ones.

These discriminative features are then used within the network to predict the correct

category of an input image.

Stefan Bosse - AFEML - Module E: Image Analysis with CNN - Summary

44 / 44

