Automated Feature Extraction with Machine
Learning and Image Processing

Prof. Dr. Stefan Bosse

University of Siegen - Dept. Maschinenbau
University of Koblenz - Practical Computer Science

1/45
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X-ray Imaging: Computed Tomography

E Principles of Computed Tomography

E From Projections to reconstruction of object slices. Algorithms and beyond...

E Quality, Noise, artifacts, and other issues with CT reconstruction
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Computer Tomography (CT)

Find an image /(x,y) from a set of rotated line projections p(s,()

More general:

Find an image set (volume) V(x,y,z) from a set of rotated image projections
P(x.,y.9)

Definitions:
» Projections: Input data (intensity images, line profiles, typically a radial projection set)

¢ Volume: Output data as a set of images forming a 3-dim (or 2-dim) cartesian space

e Voxel: A discrete 3-dim (or 2-dim) element of the output volume/image set (Voxel size
typically same for all coordinates)
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Computed Tomography (CT): Examples

[Baruchel,2000]

Fig. 1. (Left) 3D rendered view of a tomographic image of a composite material with 400 yon glass balls inside an
organic matrix; Voxel size 42 pm (Right) 3D rendered view of a tomographic image of an aluminium foam (density
0.06); Voxel size: 150 pm

5/45




Stefan Bosse - AFEML - Module Y: CT Beam Geometries

CT Beam Geometries

[Cierniak, 2011]

Shapes of X-ray beams used in CT scanner
projection systems: (a) a parallel beam of
radiation, (b) a fan beam of radiation, (c) a
beam in the form of a cone
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CT Geometries
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[Cierniak, 2011]

Fig. 2. (a) Darkening of a photographic film by X-rays = Inverse Attenuation / Intensity (b) Obtaining one-
dimensional projections using a parallel beam of X-rays (c) Projections carried out at an angle o
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CT Reconstructions: Basics

CT bases on projections. A photo (or image) is a projection of a 3-dim object onto
a 2-dim plane!

Reconstructed Map [Zvolsky, 2014]
L
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Fig. 3. Example: Two trees in a park, make 2 pictures from east and south, try to create a map of the park.
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CT Reconstructions: Basics
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[Zvolsky, 2014]

Fig. 4. Other configuration: If you see two separate trees on both views, can you uniquely reconstruct the map of

trees? Here you cannot reconstruct the position of both trees.

E If we take another picture at 45°, we are able to solve the ambiguity.
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CT Reconstructions: Basics

‘We now consider line projections only for the sake of simplicity. There are projections p(s,¢) at angle ¢ with s
as the coordinate on detector, which is a line integral of a photo.

¥ [Zvolsk, 2014]

Object

P9y

Detector

Object

Fig. 5. (Left) Projection p(s) the same for any ¢ (Right) Projection p(s,p) depends on orientation
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CT Reconstructions: Basics

E Projections are angle dependent.

A simple example should demonstrate this: A source point on the y axis is viewed under
different angles o.

¢ The location s of the spike on the 1D detector is given by:
§ = rsinp

where r is the distance of the point from the origin (measuring system) and ¢ the viewing
angle.

¢ The projection p(s,p) in the s-@-coordinate system is a sine function.
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CT Reconstructions: Basics
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Fig. 6. Projections and calculation of the projected point position under angle ¢
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CT Reconstructions: Basics

E A sinogram is a representation of the projections on the s-¢ plane.
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Fig. 7. A sinogram combines all line profiles in a diagram providing a s-¢ coordinate system (semi-polar). The point

example creates a sine wave diagram.
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Analytic Image Reconstruction

1. Backprojection

2. Filtered Backprojection

What is wrong with analytic image reconstruction from projections? Why is
filtering required, and why is a filter never a good idea?

These methods are based on an analytical expression of the inversion of the Radon
transform.
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Projection

¢ Create an example projection set
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p(s,90)

Fig. 8. We create four projections from an object consisting of 4 different densities (i values) by calculating the sum
of the contributions along a line of response (LOR)
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Backprojection

« Placing a value of p(s,p) back into the
position of the appropriate LOR

» But the knowledge of where the values
came from was lost in the projection step

¢ The best we can do is to place a constant
value into all elements along the line

y ' . Backprojection along all
\
LORs at a fixed 0.
\ A /

Fig. 9. Summing up all p(¢) along a line of response
(LOR)
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Backprojection

Fig. 10. Get back the density distribution via /(x,y) from the projections...
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Backprojection

/

Fig. 11. Sum all up all projection values under respective angles.
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Backprojection

Fig. 12. Subtract the total projection sum X=a+b+c+d from all backprojected entries.

19/45




Stefan Bosse - AFEML - Module Y: Backprojection

Backprojection

We are done. In theory ...

Fig. 13. Divide by number of projections —1 =3
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Backprojection

With few views. But with a high number of views and continuous distributions the

following is happening...

(a) Project a point source

(¢) Backproject from a few views

Fig. 14. Many angles — Tall and broadened
spike at the location of the point source

(b) Backproject from one view

(d) Backproject from all views
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Backprojection

Some Backprojection [Baruchel, 2000]
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Fig. 15. (a) Original object (b) Some projections (c) Backprojection in a point of the object (d) sinogram or set of
projections over 180° (e) Backprojection of the sinogram

22/45




Stefan Bosse - AFEML - Module Y: Backprojection

Backprojection

The backprojected image compared with original object is blurred. As a result of
the backprojection process, each pixel contains information about what the object
really contains at the pixel location, but this information is added to a blurred
version of the rest of the object.
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Backprojection

The backprojected image compared with original object is blurred. As a result of
the backprojection process, each pixel contains information about what the object
really contains at the pixel location, but this information is added to a blurred
version of the rest of the object.

An exact mathematical correction of the backprojection smoothing effect can be
done by an appropriate pre-filtering of the projections, as in the Filtered
Backprojection (FBP) algorithm.

This can be demonstrated based on Fourier considerations.
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Radon Transformation

¢ The Rdaon transformation is the base function for back projection, and given for a
distribution f{x, y) by:

p(s,8) = / " fla,y)d(acos ¢ + ysing — s)de dy

¢ Due to the o function the integrand is zero except on the Line L(s,¢)

¢ The backprojected image is given by the integration over 189° (no more information in
the other half, really?):

b(w7y) = /O' p(s, ¢)|s:mcos¢+ysin¢d¢

e The image b is blurred by: b(x,y)=f(x,»)/N(x°+y?)
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Radon Transformation

There is a close relationship between Radon and the Fourier transformations!

Fip(9)} = Pw) = 5- [ pls)eds

—0
with:

« Summation of lines causes duplication in the center

¢ Oversampling in the center of the Fourier space

26
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Radon Transformation

« Via the central slice theorem we get relationship between projection and image slice

space:
Fi{p(s,¢)} = FB{f(z,9)}Hy-

(s, 0) P(v5,0)
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Fig. 16. F: Take a 2D function f(x,y), project it onto a line, and do a FT of that projection < F,: Do a 2D FT of

f(x,y) first, and then take a slice through origin parallel to the projection line.
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Filtered backprojection

* We saw the relationship between projection space and spatial frequency space via the
Fourier transformation:

f(z,y) = F;l{F(vm, vy) }
with vy =w cos(p), v,=w sin(p), and dvdv,=wdwdp

¢ For the reconstruction we get finally:

f(z,y) :/o do l/_ dw|w|P(w)ezﬂ-iws)]szcos¢+ysin¢

o0
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Filtered backprojection

That measn for the FBP "algorithm":

-

e P: FT of projection p(s,p) )

Multiply by frequency filter |o|

Inverse-transform this product

This filtered projection is backprojected

Y Then sum over all filtered projections

A complete set of 1D projections allows the reconstruction of the original 2D
distribution without loss of information (theoretically=
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Filtered backprojection

Filters

[Baruchel, 2000]

1. Ramp filter

. 0,50
2. Sine wave filter 045 +
. . 040+ T_ramp
3. Ramp + Hanning function 0gs | - ramphanning?
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4. .. 030 ___sine wave
o5 | e
0,20 + P \,\
. . . 0,15 + ~ .
? What is the right filter? Is there a right 010 | R .
" 7 AR N N
ﬁlter? 0,05 _.’./” “‘"“"mk\ . . \‘\
0,00 a— o i .
. 0,0 0.1 0,2 0,3 0,4 05
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and disadvantages!

Fig. 17. Transfer functions of different filters || in the
frequency space
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Filtered backprojection

Filters
Ramp filter: Hanning/Sine filters:
¢ Blurring (low ®) is minimized e Blurring (low ®) is minimized

e Contrast (high ©) is accentuated (improved)

+ But noise is amplified (high ®), too! * Contrast (mid ) is accentuated

» Noise (high ®) is reduced

» Better compromise between blurring and
noise!
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Filtered backprojection

» Analytical Reconstruction works exactly for lim N — oo! It bases on Poisson
distribution, i.e., Signal-to-noise ratio =~ N

1 view 2 views 10 views

[Zvolsky, 2014]
H \
‘ \
original image FBP image
3 i
]
30 views 50 views 80 views

projection

backprojection

ramp filter

sinogram

filtered sinogram

Fig. 18. The reconstruction quality increases with the number of projections
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Filtered backprojection

— . pe— —— [Zvolsky, 2014]
. S J— .

Fig. 19. BP (left) vs FBP (right)
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Reconstruction and Number of Projections

Fig. 20. The quality of the reconstruction and artifacts (noise) depends on the number of used projections
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http://www.impactscan.org/slides/impactday/basicct
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Reconstruction Errors

Reality is more complex:

4 ¢ Data is discrete: FBP only precise if all angles are available
¢ Data is noisy: Measurements follow a probability distribution
¢ Detectors are unprecise: mis-positioning of photons
¢ Detector geometry may not provide complete data

L Not all photons travel along straight lines: scatter, absorption

Other reconstruction methods:

« Itertative Image Reconstruction
« Statistical methods (using forward- and backward projection learning)

e ML-based (data-driven) reconstruction models
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[Baruchel, 2000]
Much attention must also be paid to the noise of the camera or, more
precisely, to its dynamic range. When the inspection's issue is the
determination of the accurate size of some internal feature, or the local
characterization of materials (density measurement for instance), then an
increased attention must be paid to the reconstruction artifacts. They create
artificial patterns inside the reconstructed slice (streak artifacts), or they
locally modify the pixels values (cupping effect), and hence the
quantitative result.
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Reconstruction Errors

Artifacts and errors in slice reconstruction due to:

-

¢ Beam energy distribution, polychromatic X-ray Pl ey Tonogphy n Ve S 200, 0 2)
fields;

e Detector saturation;

 Aliasing, line and ring artifacts;

¢ Scattered photons;

o [lI corrected detector;

¢ Spatial distortion of the detector;

¢ Centering error.
\_ g

37745




Stefan Bosse - AFEML - Module Y: Aliasing
Aliasing

» High (spatial) frequencies are encountered in the signal corresponding to every
projection.

o They are due to the steep edges which are eventually present in the object. As the
detector samples the signal (all along the projection) with a non-zero step, high
frequencies corrupt the data, within the Fourier domain. Streaks are generated.

o Il corrected detector: The signal delivered by every sensitive cell of the detector must be
linearly spread between the offset level (corresponding to the absence of photons) and
the gain level (corresponding to the non-attenuated flux).
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Aliasing
» A bad correction of one cell will generate, in the reconstructed image a "ring artifact",
i.e. the image of a ring, centered on the pixel corresponding to the location of the

rotation axis, or "line artifacts" by a dead pixel.

« Saturation noise: Different pixels have different saturation levels = spatial patterns!
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Aliasing

[BDG — Richtlinie P 203]

Fig. 21. Line artifact due to a defect detector pixel
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Beam Hardening

X-ray emission is commonly polychromatic with a continuous energy spectrum.
But p and attenuation depends on energy! Beam hardening is the correction of this
phenomena using physical energy or numerical filters.

BDG — Richtlinie P 203]

L. J3mm

Fig. 22. (Left) Without beam hardening (boundary intensification) (Right) With beam hardening
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Rotation Axis Error

(xc=488)

(xc=489)

(xc=486)

(xc=460)

Fig. 23. CT reconstruction with sine-wave filtered back projection from 800 projections (image width=400 pixels)
of an Aluminum die casted plate with pores (40 mm width, 5 mm thickness), no X-ray energy filter (a) Centered
rotation axis, error: £ 1 pixel accuracy (b) Rotation axis error 2 pixels! (c) Rotation axis error: 28 pixels
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Normal CT versa uCT

« "Normal" CT: FSD=0.5 mm, M=2, Detecor pixel size 200 um, without X-ray energy filtration using classical
sine-wave filtered backprojection algorithm;

o nCT: FSD=50 pm, using Zeiss Xradia and proprietary reconstruction software and X-ray energy filtration

65000

30000

S
Ll

(b)

Fig. 24. Specimen: Aluminum die casted plate with pores, 800-1000 projections (a) pCT reconstruction, 120 kV (b)
Normal CT, 60 kV
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Do not trust CT

[BDG — Richtlinie P 203]

(a) CT Slice (b) Micrograph

Fig. 25. Comparison of a uCT slice (voxel size 20um) and nearly the micrograph slice at nearly the same depth.
There are differences and artifacts. Find them!
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Conclusions

Vs

1. CT commonly records a set of radial 1-dim or 2-dim projections of a 3-dim object

2. Backprojection is used to transform the radial 2-dim image projection set to a set of slice images forming
a 3-dim volume

3. We have: X-ray intensity images; We want: p distributions!
4. Backprojection introduces errors; blurring is compensated by frequency filtering.

5. Do not trust reconstructed CT volume slices if accuracy is important! Too many artifacts ...

~
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